References |
|
Abbassi, M.R. & Mancktelow, N.S. 1990. The effect of initial perturbation shape and symmetry on fold development. J. Struct. Geol. 12, 273-282. Abbassi, M.R. & Mancktelow, N.S. 1992. Single layer buckle folding in non-linear materials – I. Experimental study of fold development from an isolated initial perturbation. J.Struct. Geol. 14, 85-104. Biot, M.A. 1937. Bending of an infinite beam on an elastic foundation. ASME J. Appl. Mech. A59, 1-7. Biot, M.A. 1957. Folding instability of a layered viscoelastic medium under compression. Proc. R. Soc. Lond. A242, 111-454. Biot, M.A. 1959. On the instability of folding deformation of a layered viscoelastic medium in compression. J. Appl. Mech. 26, 393-400. Biot, M.A. 1961. Theory of folding of stratified viscoelastic media and its implications in tectonics and orogenesis. Geol. Soc. Am. Bull. 72, 1595-1620. Biot, M.A. 1963. Internal buckling under initial stress in finite elasticity. Proc. Royal Soc. A273, 306-328. Biot, M.A. 1965. Mechanics of Incremental Deformations. John Wiley, New York. 504pp. Bons, P. D., Jessell, M. W., and Brecht, G. 1997. Domain boundary migration in experiment and nature, ../../brecht/index.html Braun, J. Chery, J. Poliakov, A. Mainprice, D. Vauchez, A. Tomassi, A. & Daignieres, M. 1999. A simple parameterization of strain localization in the ductile regime. Submitted to J. Geophys. Res. Budd, C.J. Hunt, G.W. & Peletier, M.A. 1998. Self-similar fold evolution under prescribed end-shortening. Technical report 98-13, University of Bath. Budd, C.J. & Peletier, M.A. 1998. Approximate self-similarity in models of geological folding. Technical report 98-09, University of Bath. Chapple, W.M. 1969. Fold shape and rheology: the folding of an isolated viscous-plastic layer. Tectonophysics. 7, 97-116. Cobbold, P.R. 1975. Fold propagation in single embedded layers. Tectonophysics. 27, 333-351. Cobbold, P.R. 1977. Finite-element analysis of fold propatation – a problematic application? Tectonophysics. 38, 339-353. Crutchfield, J.P. Farmer, J.D. Packard, N.H. & Shaw, R.S. 1986. Chaos. Scientific American 255 (6), 38-49. Den Brok B, Zahid M, Passchier C.W. 1999. Stress induced grain boundary migration in very soluble brittle salt, 21, 147-151 Derby, B. & Ashby, M.F. 1987. On dynamic recrystallisation, Seripta Metall. 21, 879-884. Fletcher, R.C. 1974. Wavelength selection in the folding of a single layer with power-law rheology. Am. J. Sci. 274, 1029-1043. Fletcher, R.C. 1991. Three-dimensional folding of an embedded viscous layer in pure shear, J. Struct. Geol., 13, 87-96. Frost, H. J. and Ashby, M. F., 1982 Deformation Mechanism Maps, Pergamon, Oxford. Ghosh, S.K. 1970. A theoretical study of intersecting fold patterns. Tectonophysics. 9, 559-569. Holmes, P. 1990. Nonlinear dynamics, chaos, and mechanics. Appl. Mech. Rev. 43, S23-S39. Hudleston, P.J. 1973. An analysis of "single-layer" folds developed experimentally in viscous media. Tectonophysics 16, 189-214. Hudleston, P.J. & Lan, L. 1994. Rheological controls on the shapes of single-layer folds. J. Struct. Geol. 16, 1007-1021. Hunt, G.W. & Lawther, R. 1999. Finite element modelling of spatially-chaotic structures. In press. Hunt, G.W. Mühlhaus, H.-B. & Whiting, A.I.M. 1996a. Evolution of localized folding for a thin elastic layer in a softening visco-elastic medium. Pure Appl. Geophys. 146, 229-252. Hunt, G.W. Mühlhaus, H.-B. Hobbs, B. & Ord, A. 1996b. Localized folding of viscous layers. Geologische Rundschau (Int. J. Earth Sciences) 85, 58-64. Hunt, G.W. Mühlhaus, H.-B. & Whiting, A.I.M. 1997. Folding processes and solitary waves in structural geology. Phil. Trans. R. Soc. Lond. A 355, 2197-2213. Hunt, G.W. Wadee, M.K. & Shiacolas, N. 1993. Localized elasticae for the strut on the linear foundation. J. Appl. Mech. 60, 1033-1038. Jaeger, J.C. 1969. Elasticity, Fracture and Flow. Methuen & Co. Ltd, London. 268pp. Johnson, A.M. & Fletcher, R.C. 1994. Folding of Viscous Layers. Columbia University Press. 461pp. Kameyama, M. Yuen, D.A. & Fujimoto, H. 1997. The ineraction of viscous heating with grain-size dependent rheology in the formation of localized slip zones. Geophys. Res. Lett. 24, 2523-2526. Karato, S. Paterson, M.S. & FitzGerald, J.D. 1986. Rheology of synthetic olivine aggregates: influence of grain size and water. J. Geophys. Res. 91, 8151-8176. Karato, S.-I., and Wu, P., 1993 Rheology of the upper mantle: A synthesis, Science, 260, 771-778. Lan, L.& Hudleston, P.J. 1991. Finite element models of buckle folds in non-linear materials. Tectonophysics 199, 1-12. Mancktelow, N.S. & Abbassi, M.R. 1992. Single layer buckle folding in non-linear materials – II. Comparison between theory and experiment. J. Struct. Geol. 14, 105-120. Mancktelow, N.S. 1999. Finite-element modelling of single-layer folding in elasto-viscous materials: the effect of initial perturbation geometry. J. Struct. Geol. (in press). Mayer-Kress, G. & Kaneko, K. 1989. Spatiotemporal chaos and noise. J. Stat. Phys. 54, 1489-1508. Moresi, L., Gurnis, M., Zhong, S. 2000. Plate tectonics and convection in the Earth’s mantle: toward a numerical simulation, Computing in Science and Engineering, 2, 22-33. Mühlhaus, H.-B., Moresi, L., Sakaguchi, H., 2000. Discrete and continuum modelling of granular materials, in Constitutive Modelling of Granular Materials (edited by Kolymbas, D.) Springer, pp 209-224. Mühlhaus, H.-B. 1993. Evolution of elastic folds in plane strain. In: Modern Approaches to Plasticity (edited by Kolymbas, D.). Elsevier, New York. 734-765. Mühlhaus, H.-B. Sakaguchi, H. & Hobbs, B.E. 1998. Evolution of three-dimensional folds for a non-Newtonian plate in a viscous medium. Proc. R. Soc. Lond. A 454, 3121-3143. Ord, A. 1992. The fractal geometry of patterned structures in numerical models of rock deformation. In: Fractals and Dynamic Systems in Geoscience (edited by J.H. Kruhl). Springer, Berlin, Heidelberg, New York. 223-231. Packard, N.H. Crutchfield, J.P. Farmer, J.D. & Shaw, R.S. 1980. Geometry from a time series. Phys. Rev. Lett. 45, 712-716. Price, N.J. & Cosgrove, J.M. 1990. Analysis of Geological Structures. Cambridge University Press, Cambridge. Ramberg, H. 1963. Fluid dynamics of viscous folding. Am. Assoc. Petrol. Geol. Bull. 47, 484-515. Ruelle, D. 1990. Deterministic chaos: the science and the fiction. The Claude Bernard Lecture, 1989. Proc. R. Soc. Lond. A427, 241-248. Sander, B. 1930. Gefügekunde der gesteine. Julius Springer, Vienna. 352pp. Smith, R.B. 1977. Formation of folds, boudinage and mullions in non-Newtonian materials. Bull. Geol. Soc. Am. 88, 312-320. Smith, R.B. 1979. The folding of a strongly non-Newtonian layer. Am. J. Sci. 279, 272-287. Takens, F. 1981. Detecting strange attractors in turbulence. In: Dynamical systems and Turbulence (edited by Rand, D.A. & Young, L.S.). Lecture Notes in Mathematics 898, 366-381. Treagus, S. H. 1973. Buckling stability of a viscous single-layer system oblique to the principal compression. Tectonophysics 19, 271-289. Whiting, A.I.M. & Hunt, G.W. 1997. Evolution of nonperiodic forms in geological folds. Math. Geol. 29, 705-723. Williams, J.R. Lewis, R.W. & Zienkiewicz, O.C. 1978. A finite-element analysis of the role of initial perturbations in the folding of a single viscous layer. Tectonophysics 45, 187-200. Willis, B. 1893. The mechanics of Appalachian structures. United States Geological Survey 13th Annual Report, 211-281. Zhang, Y. Hobbs, B.E. Ord, A. & Mühlhaus, H.-B. 1996. Computer simulation of single layer buckling. J. Struct. Geol. 18, 643-655. Zhang, Y. Hobbs, B.E. Ord, A. & Mühlhaus, H.-B. 1999a. What controls fold shape? Clarification of an issue regarding the influence of initial irregularities. Submitted to J. Struct. Geol. Zhang, Y. Hobbs, B.E. Ord, A. & Mühlhaus, H.-B. 1999b. A clarification of an issue regarding the influence of initial irregularities upon fold shape. In: Abstract volume of Last Conference of the Millenium – The Specialist Group in Tectonics and Structural Geology Conference (Halls Gap, Victoria, Australia), GSA Abstracts Series 53, 278-279. Zhang, Y. Hobbs, B.E. Ord, A. & Mühlhaus, H.-B. 1999c. Folding of viscoelastic materials. In preparation. Zhang, Y. Mancktelow, N.S. Hobbs, B.E. Ord, A. and Mühlhaus, H.-B. 2000. Numerical modelling of single-layer folding: clarification of an issue regarding the effect of computer codes and the influence of initial irregularities. J. Struct. Geol. (in press). | |