1.7 References
Ahmad, S., Ohtomo, M. & Whitworth, R. W.
(1986). Observations of a dislocation source in ice by synchrotron radiation
topography, Nature 319: 659-660.
Ahmad, S., Shearwood, C. & Whitworth, R.
W. (1992). Dislocation multiplication mechanisms in ice, In Physics
and Chemistry of Ice (ed. N. Maeno and T. Hondoh), pp. 492-6. Hokkaido
University Press, Sapporo.
Alley, R. B. (1992). Flow-law hypotheses
for ice-sheet modeling, Journal of Glaciology. 38: 245-256.
Alley, R. B., Perepezko, J. H. & Bentley,
C. R. (1986). Grain growth in polar ice: I. Theory, Journal of Glaciology
32: 415-424.
Ashby, M. F. & Duval, P. (1985). The creep
of polycrystalline ice, Cold Regions Science and Technology 11:
285-300.
Azuma, N. & Higashi, A. (1985). Formation
processes of ice fabric patterns in ice sheets, Annals of Glaciology
6: 130-134.
Azuma, N. (1994). A flow law for anisotropic
ice and its implication to ice sheets, Earth and Planetary Science
Letters 128: 601-614.
Azuma, N. (1995). A flow law for anisotropic
ice under uniaxial compressive deformation, Cold Regions Science and
Technology 23: 137-147.
Azuma, N. & Goto-Azuma, K. (1996). An
anisotropic flow law for ice-sheet ice and its implications, Annals
of Glaciology 23:202-208.
Baker, I. (1997). Observation of dislocations
in ice. Journal of Physical Chemistry B 101: 6158-6162.
Barnes, P., Tabor, D. & Walker, J. C. F.
(1971). The friction and creep of polycrystalline ice, Proceedings
of the Royal Society of London A125: 670-693.
Bernal, J. D. & Fowler, R. H. (1933).
A theory of water and ionic solution, with particular reference to hydrogen
and hydroxyl ions, Journal of Chemistry and Physics 38:
840-846.
Bjerrum, N. (1951). Structure and properties
of ice i. the position of hydrogen atoms and the zero-point entropy of
ice, K. danske Vidensk. Selsk. Skr. 27: 56.
Bridgman, P. W. (1937). The phase diagram
of water to ,
Journal of Chemistry and Physics 5: 964-966.
Budd, W. F. & Jacka, T. H. (1989). A
review of ice rheology for ice sheet modeling. Cold Regions Science
and Technology, 16, 107-44.
Castelnau, O., Thorsteinsson, T., Kipfstuhl,
J., Duval, P. & Canova, G. R. (1996). Modeling fabric development along
the GRIP ice core, central Greenland, Annals of Glaciology 23:
194-201.
Coble, R. L. (1963). A model for boundary
diffusion controlled creep in polycrystalline materials, Journal of
Applied Physics 34: 1979-1982.
Cole, D. M. (1985). Grain growth and the
creep behaviour of ice, Cold Regions Science and Technology 10:
187-189.
Duval, P., Ashby, M. F. & Anderman, I. (1983).
Rate controlling processes in the creep of polycrystalline ice, Journal
of Physical Chemistry 87: 4066-4074.
Eshelby, J. D. (1961). Dislocations in visco-elastic
materials, Philosophical Magazine 6: 953-963.
Frost, H. J. & Ashby, M. F. (1982). Deformation-mechanism
maps. The plasticity and creep of metals and ceramics, Published
by Pergamon Press, New York.
Glen, J. W. (1955). The creep of polycrystalline
ice, Proceeding of the Royal Society A228: 513-38.
Glen, J. W. (1968). The effects of hydrogen
disorder on dislocation movement and plastic deformation of ice, Physics
of condensed matter 7: 43-51.
Glen, J. W. & Perutz, M. F. (1954). The growth
and deformation of ice crystals, Journal of Glaciology 2:
397-403.
Goldsby, D. L. & Kohlstedt, D. L. (1997).
Grain boundary sliding in fine-grained ice I. Scripta Materialia,
37, 1399-406.
Goodman, D. J., Frost, H. J. & Ashby, M.
F. (1981). The plasticity of polycrystalline ice, Philosophical Magazine
43: 665-695.
Griggs, D. T. & Coles, N. E. (1954). Creep
of a single crystal of ice, SIPRE Technical Report 11: 24.
Herring (1950). Diffusional viscosity of
a polycrystalline solid, Journal of Applied Geophysics 21:
437.
Higashi, A. (1966). Mechanisms of plastic
deformation in ice single crystals, Physics of ice and snow Conference
Proceeds 1: 277.
Hobbs, P. V. (1974). Ice Physics,
Clarendon Press, Oxford.
Hudleston, P. J. (1980). The progressive
development of inhomogeneous shear and crystallographic fabric in glacial
ice, Journal of Structural Geology 2: 189-196.
Hutchison, J. W. (1976). Bonds and self consistent
estimates for creep of polycrystal materials, Proceedings of the Royal
Society of London A348: 101-127.
Hutchison, J. W. (1977). Creep and plasticity
of hexagonal polycrystals as related to single crystal slip, Met Trans
8A: 1465-1469.
Jacka, T. H. (1984). The time and strain
required for development of minimum strain rates in ice. Cold Regions
Science and Technology, 8, 261-8.
Jia, K., Baker, I., Liv, F. & Duddley,
M. (1996). Observation of slip transmission through a grain boundary in
ice. Journal of Material Science, 31: 2373-2378.
Jones, S. J. & Glen, J. W. (1969). The effect
of dissolved impurities on the mechanical properties of ice crystals,
Philosophical Magazine 19: 13-24.
Kamb, W. B. (1959). Ice petrofabric observations
from Blue Glacier, Washington in relation to theory and experiment, J.
Geophys. Res., 64, 1891-1909.
Kamb, W. B. (1961). The glide direction in
ice, Journal of Glaciology., 3, 1097-1106.
Kamb, W. B. (1972). Experimental recrystallization
of ice under stress, Am. Geophys. Union Monog., 16, 211-241.
Liv, F., Baker, I. & Duddley, M. (1995).
Dislocation-grain boundary interactions in ice crystals. Philosophical
Magazine A71: 15-42.
McConnell, J. C. (1891). On the plasticity
of an ice crystal, Proceedings of the Royal Society of London 49:
323-343.
Manley, M. E. & Schulson E. M. (1997).
On the strain-rate sensitivity of columnar ice. Journal of Glacialogy,
43, 408-10.
Marmo, B. & Wilson, C. J. L. (1998).
Strain localisation and incremental deformation within ice masses, Framnes
Mountains, east Antarctica. Journal of Structural Geology, 20:
149-162.
Marmo. B. & Wilson, C. J. L. (1999).
A verification procedure for the use of FLAC to study glacial dynamics
and the implementation of an anisotropic flow law. FLAC and Numerical
Modeling in Geomechanics (eds. Detournay, C. & Hart, R.), pp183-190.
Balkema, Rotterdam.
Mellor, M. & Cole, D. M. (1982). Deformation
and failure of ice under constant stress or constant strain-rate. Cold
Regions Science and Technology, 5: 201-19.
Nabarro, F. R. N. (1948). Deformation of
crystals by motion of a single ions. In Strength of solids. Report
of a conference on the Strength of Solids, Bristol 7th-9th July 1947 (ed.
N. F. Mott) Physical society, London. p. 75-90.
Nakaya, U. (1958). Mechanical properties
of single crystals of ice. Part I. Geometry of deformation,
US Army Snow, Ice and Permafrost Research Establishment Research Report
no. 28.
Nye, J. F. (1952). The mechanics of glacier
flow. Journal of Glaciology, 2, 82-93.
Petrenko, V. F. & Whitworth, R. W. (1999).
Physics of Ice, Oxford University Press.
Pimienta, P., Duval, P., & Lipenkov,
V. Y. (1987). Mechanical behaviour of anisotropic polar ice, IAHS Publications
170: 57-66.
Poirier, J -P. (1985). Creep of Crystals,
Cambridge University Press.
Rigsby, G. P. (1957). Effects of hydrostatic
pressure on velocity of shear deformation of single crystals of ice, SIPRE
Technical Report 32: 7.
Pauling, L. (1935). The structure and entropy
of ice and of other crystals with some randomness of atomic arrangement,
Journal of American Chemistry and Physics 57: 2680-2684.
Rist, M. A. & Murrell, S. A. F. (1994).
Ice triaxial deformation and fracture. Journal of Glaciology, 40,
304-18.
Schoeck, G. (1956). Moving dislocations and
solute atoms, Physics Review 102: 1458-1459.
Shearwood, C. & Whitworth, R. W. (1991).
The velocity of dislocations in ice, Philosophical Magazine 64:
289-302.
Steinemann, S. (1954). Results of preliminary
experiments on the plasticity of ice, Journal of Glaciology 2:
404-412.
Taylor, G. I. (1938). Plastic strain in metals,
Journal of the Institute of Metals 62: 307-24.
Van der Veen, C. J. & Whillans, I. M. (1994).
Development of fabric in ice, Cold Regions Science and Technology
22: 171-195.
Wakahama, G. (1962). On the plastic deformation
of ice, Low Temperature Science A20: 57-130.
Wakahama, G. (1966). On the plastic deformation
of single crystal of ice, Physics of ice and snow Conference Proceedings
1: 291.
Weertman, J. (1963). The Eshelby-Shoeck viscous
dislocation damping mechanism applied to steady state creep of ice. In
Ice and Snow: properties, processes and applications (ed. W. D.
Kingery), pp. 28-33. MIT Press, Cambridge, Massachusetts.
Weertman, J. (1973). Creep of ice. In Physics
and chemistry of ice (ed. E. Whalley, S. J. Jones, and L. W. Gold),
pp. 320-337. Royal Society of Canada, Ottawa.
Weertman, J. & Weertman, J. R. (1964). Elementary
dislocation theory, Macmillan, New York.
Whitworth, R. W. (1978). The core structure
and mobility of dislocations in ice, Journal of Glaciology 21:
341-59.
Wilson, C. J. L. (1986). Deformation induced
recrystallisation of ice: The application of in situ experiments. In Mineral
and rock deformation laboratory studies (ed. Hobbs, B. E. & Heard,
H. C.), American Geophysical Union (Geophysical Monograph 36),
pp. 213-234
Wilson, C. J. L. & Russell-Head, D. S. (1982).
Steady-state preferred orientation of ice deformed in plane strain at
-1°C, Journal of Glaciology 28: 145-159.
Wilson, C. J. L., Zhang, Y. & Stuwe, K. (1996).
The effects of localized deformation on melting processes in ice, Cold
Regions Science and Technology 24: 177-189.
Wilson, C.J.L. & Zhang, Y. (1996). Development
of microstructure in the high-temperature deformation of ice, Annals
Glaciology, 23: 293-302.
Wilson, C.J.L. & Zhang, Y. (1994). Comparison
between experiment and computer modeling. of plane-strain simple-shear
ice deformation, J Glaciology, 40: 46-53.
|