FLOW IN POLYCRYSTALLINE ICE

Part 1 - Examples of microscopic flow

By Chris Wilson and Brett Marmo

 

1.7 References

Ahmad, S., Ohtomo, M. & Whitworth, R. W. (1986). Observations of a dislocation source in ice by synchrotron radiation topography, Nature 319: 659-660.

Ahmad, S., Shearwood, C. & Whitworth, R. W. (1992). Dislocation multiplication mechanisms in ice, In Physics and Chemistry of Ice (ed. N. Maeno and T. Hondoh), pp. 492-6. Hokkaido University Press, Sapporo.

Alley, R. B. (1992). Flow-law hypotheses for ice-sheet modeling, Journal of Glaciology. 38: 245-256.

Alley, R. B., Perepezko, J. H. & Bentley, C. R. (1986). Grain growth in polar ice: I. Theory, Journal of Glaciology 32: 415-424.

Ashby, M. F. & Duval, P. (1985). The creep of polycrystalline ice, Cold Regions Science and Technology 11: 285-300.

Azuma, N. & Higashi, A. (1985). Formation processes of ice fabric patterns in ice sheets, Annals of Glaciology 6: 130-134.

Azuma, N. (1994). A flow law for anisotropic ice and its implication to ice sheets, Earth and Planetary Science Letters 128: 601-614.

Azuma, N. (1995). A flow law for anisotropic ice under uniaxial compressive deformation, Cold Regions Science and Technology 23: 137-147.

Azuma, N. & Goto-Azuma, K. (1996). An anisotropic flow law for ice-sheet ice and its implications, Annals of Glaciology 23:202-208.

Baker, I. (1997). Observation of dislocations in ice. Journal of Physical Chemistry B 101: 6158-6162.

Barnes, P., Tabor, D. & Walker, J. C. F. (1971). The friction and creep of polycrystalline ice, Proceedings of the Royal Society of London A125: 670-693.

Bernal, J. D. & Fowler, R. H. (1933). A theory of water and ionic solution, with particular reference to hydrogen and hydroxyl ions, Journal of Chemistry and Physics 38: 840-846.

Bjerrum, N. (1951). Structure and properties of ice i. the position of hydrogen atoms and the zero-point entropy of ice, K. danske Vidensk. Selsk. Skr. 27: 56.

Bridgman, P. W. (1937). The phase diagram of water to , Journal of Chemistry and Physics 5: 964-966.

Budd, W. F. & Jacka, T. H. (1989). A review of ice rheology for ice sheet modeling. Cold Regions Science and Technology, 16, 107-44.

Castelnau, O., Thorsteinsson, T., Kipfstuhl, J., Duval, P. & Canova, G. R. (1996). Modeling fabric development along the GRIP ice core, central Greenland, Annals of Glaciology 23: 194-201.

Coble, R. L. (1963). A model for boundary diffusion controlled creep in polycrystalline materials, Journal of Applied Physics 34: 1979-1982.

Cole, D. M. (1985). Grain growth and the creep behaviour of ice, Cold Regions Science and Technology 10: 187-189.

Duval, P., Ashby, M. F. & Anderman, I. (1983). Rate controlling processes in the creep of polycrystalline ice, Journal of Physical Chemistry 87: 4066-4074.

Eshelby, J. D. (1961). Dislocations in visco-elastic materials, Philosophical Magazine 6: 953-963.

Frost, H. J. & Ashby, M. F. (1982). Deformation-mechanism maps. The plasticity and creep of metals and ceramics, Published by Pergamon Press, New York.

Glen, J. W. (1955). The creep of polycrystalline ice, Proceeding of the Royal Society A228: 513-38.

Glen, J. W. (1968). The effects of hydrogen disorder on dislocation movement and plastic deformation of ice, Physics of condensed matter 7: 43-51.

Glen, J. W. & Perutz, M. F. (1954). The growth and deformation of ice crystals, Journal of Glaciology 2: 397-403.

Goldsby, D. L. & Kohlstedt, D. L. (1997). Grain boundary sliding in fine-grained ice I. Scripta Materialia, 37, 1399-406.

Goodman, D. J., Frost, H. J. & Ashby, M. F. (1981). The plasticity of polycrystalline ice, Philosophical Magazine 43: 665-695.

Griggs, D. T. & Coles, N. E. (1954). Creep of a single crystal of ice, SIPRE Technical Report 11: 24.

Herring (1950). Diffusional viscosity of a polycrystalline solid, Journal of Applied Geophysics 21: 437.

Higashi, A. (1966). Mechanisms of plastic deformation in ice single crystals, Physics of ice and snow Conference Proceeds 1: 277.

Hobbs, P. V. (1974). Ice Physics, Clarendon Press, Oxford.

Hudleston, P. J. (1980). The progressive development of inhomogeneous shear and crystallographic fabric in glacial ice, Journal of Structural Geology 2: 189-196.

Hutchison, J. W. (1976). Bonds and self consistent estimates for creep of polycrystal materials, Proceedings of the Royal Society of London A348: 101-127.

Hutchison, J. W. (1977). Creep and plasticity of hexagonal polycrystals as related to single crystal slip, Met Trans 8A: 1465-1469.

Jacka, T. H. (1984). The time and strain required for development of minimum strain rates in ice. Cold Regions Science and Technology, 8, 261-8.

Jia, K., Baker, I., Liv, F. & Duddley, M. (1996). Observation of slip transmission through a grain boundary in ice. Journal of Material Science, 31: 2373-2378.

Jones, S. J. & Glen, J. W. (1969). The effect of dissolved impurities on the mechanical properties of ice crystals, Philosophical Magazine 19: 13-24.

Kamb, W. B. (1959). Ice petrofabric observations from Blue Glacier, Washington in relation to theory and experiment, J. Geophys. Res., 64, 1891-1909.

Kamb, W. B. (1961). The glide direction in ice, Journal of Glaciology., 3, 1097-1106.

Kamb, W. B. (1972). Experimental recrystallization of ice under stress, Am. Geophys. Union Monog., 16, 211-241.

Liv, F., Baker, I. & Duddley, M. (1995). Dislocation-grain boundary interactions in ice crystals. Philosophical Magazine A71: 15-42.

McConnell, J. C. (1891). On the plasticity of an ice crystal, Proceedings of the Royal Society of London 49: 323-343.

Manley, M. E. & Schulson E. M. (1997). On the strain-rate sensitivity of columnar ice. Journal of Glacialogy, 43, 408-10.

Marmo, B. & Wilson, C. J. L. (1998). Strain localisation and incremental deformation within ice masses, Framnes Mountains, east Antarctica. Journal of Structural Geology, 20: 149-162.

Marmo. B. & Wilson, C. J. L. (1999). A verification procedure for the use of FLAC to study glacial dynamics and the implementation of an anisotropic flow law. FLAC and Numerical Modeling in Geomechanics (eds. Detournay, C. & Hart, R.), pp183-190. Balkema, Rotterdam.

Mellor, M. & Cole, D. M. (1982). Deformation and failure of ice under constant stress or constant strain-rate. Cold Regions Science and Technology, 5: 201-19.

Nabarro, F. R. N. (1948). Deformation of crystals by motion of a single ions. In Strength of solids. Report of a conference on the Strength of Solids, Bristol 7th-9th July 1947 (ed. N. F. Mott) Physical society, London. p. 75-90.

Nakaya, U. (1958). Mechanical properties of single crystals of ice. Part I. Geometry of deformation, US Army Snow, Ice and Permafrost Research Establishment Research Report no. 28.

Nye, J. F. (1952). The mechanics of glacier flow. Journal of Glaciology, 2, 82-93.

Petrenko, V. F. & Whitworth, R. W. (1999). Physics of Ice, Oxford University Press.

Pimienta, P., Duval, P., & Lipenkov, V. Y. (1987). Mechanical behaviour of anisotropic polar ice, IAHS Publications 170: 57-66.

Poirier, J -P. (1985). Creep of Crystals, Cambridge University Press.

Rigsby, G. P. (1957). Effects of hydrostatic pressure on velocity of shear deformation of single crystals of ice, SIPRE Technical Report 32: 7.

Pauling, L. (1935). The structure and entropy of ice and of other crystals with some randomness of atomic arrangement, Journal of American Chemistry and Physics 57: 2680-2684.

Rist, M. A. & Murrell, S. A. F. (1994). Ice triaxial deformation and fracture. Journal of Glaciology, 40, 304-18.

Schoeck, G. (1956). Moving dislocations and solute atoms, Physics Review 102: 1458-1459.

Shearwood, C. & Whitworth, R. W. (1991). The velocity of dislocations in ice, Philosophical Magazine 64: 289-302.

Steinemann, S. (1954). Results of preliminary experiments on the plasticity of ice, Journal of Glaciology 2: 404-412.

Taylor, G. I. (1938). Plastic strain in metals, Journal of the Institute of Metals 62: 307-24.

Van der Veen, C. J. & Whillans, I. M. (1994). Development of fabric in ice, Cold Regions Science and Technology 22: 171-195.

Wakahama, G. (1962). On the plastic deformation of ice, Low Temperature Science A20: 57-130.

Wakahama, G. (1966). On the plastic deformation of single crystal of ice, Physics of ice and snow Conference Proceedings 1: 291.

Weertman, J. (1963). The Eshelby-Shoeck viscous dislocation damping mechanism applied to steady state creep of ice. In Ice and Snow: properties, processes and applications (ed. W. D. Kingery), pp. 28-33. MIT Press, Cambridge, Massachusetts.

Weertman, J. (1973). Creep of ice. In Physics and chemistry of ice (ed. E. Whalley, S. J. Jones, and L. W. Gold), pp. 320-337. Royal Society of Canada, Ottawa.

Weertman, J. & Weertman, J. R. (1964). Elementary dislocation theory, Macmillan, New York.

Whitworth, R. W. (1978). The core structure and mobility of dislocations in ice, Journal of Glaciology 21: 341-59.

Wilson, C. J. L. (1986). Deformation induced recrystallisation of ice: The application of in situ experiments. In Mineral and rock deformation laboratory studies (ed. Hobbs, B. E. & Heard, H. C.), American Geophysical Union (Geophysical Monograph 36), pp. 213-234

Wilson, C. J. L. & Russell-Head, D. S. (1982). Steady-state preferred orientation of ice deformed in plane strain at -1°C, Journal of Glaciology 28: 145-159.

Wilson, C. J. L., Zhang, Y. & Stuwe, K. (1996). The effects of localized deformation on melting processes in ice, Cold Regions Science and Technology 24: 177-189.

Wilson, C.J.L. & Zhang, Y. (1996). Development of microstructure in the high-temperature deformation of ice, Annals Glaciology, 23: 293-302.

Wilson, C.J.L. & Zhang, Y. (1994). Comparison between experiment and computer modeling. of plane-strain simple-shear ice deformation, J Glaciology, 40: 46-53.